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Abstract- The flow and heat-transfer characteristics of the free convection micropolar flow are described. 
It is found that decreasing rates of heat-transfer can be achieved by making the Newtonian solveat more and 
more micropolar. The micropolar characteristics are determined by the two non-dimensional parameters 
R lan index to microstructure character) and A Can index to substructure character). The effect of A is 

more pronounced on the flow and temperature fields while that of A is relatively less. 

NUME~C~~A~RE x Ir x2, x3? Cartesian coordinates; 

non-dimensional micro-rotation Y7 non-dimensional coordinates per- 

Parameter s II/&! ;, pendicular to the plates ; 

body force acting in the negative fi$ coefficient of vohtme expansion ; 

direction ofx,-axis; P* density ; 

thermal conductivity; p, fc, y, viscosity coefficients ; 

distance between the plates; 0, non-dimensional micro-rotation 
wall heat ratio parameter; change component LSv&, ; 

in m produces unequal tempera- % non-dimensional temperature 
tures at the walls; se/e, ; 
micro-stresses ; e 

6,” 
temperature difference E Tt - T,; 

Nussett numbers ; temperature ; 

pressure; v,, ttZ,, v3, micro-rotation components. 
equilibrium state pressure; 
the pressure difference p - pe ; 1. INTRODUCTION 

mass flow rate $ tl dy ; EARLIER, many attempts have been made at a 
non-dimensional micro-rotation nonclassical approach to the problem of fluids 
parameter k/p ; containing a substructure. Anzelius [l] recog- 
non-dimensional wall heat para- nized that fluids with oblong molecules behaved 
meter ptl$/k,O, ; in an unexpected manner in a shear field. As a 
constant wall temperatures ; major contribution towards the modern con- 
equilibrium state temperature; tinuum theories for nonclassical fluid mechanics, 
shear-stress ; Ericksen [2,3] has deveioped field equations, 
non-dimensional velocity com- which takes into account the presence of sub- 
ponent ; structure in the fluid. This theary has its own 
velocity components in x1, x2 and restrictions towards an essentially dilute sus- 
xJ directions; pension situations. However, recent experiments 
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due to Hoyt and Fabula [4], Vogel and Patter- 
son [S], with fluids containing extremely small 
amount of polymeric additives, have indicated 
that the skin friction near a rigid body in such 
fluids is considerably lower than that in the 
same fluids without additives. As a general 
extension to Ericksen’s theory and in support 
of the above experiments concerning the addi- 
tives, Eringen [6] has proposed the theory of 
micropolar fluids. This theory fully explains 
the inertial characteristics of the substructure 
particles which are also allowed to undergo 
rotation and deformations. 

It is of interest to apply this modern tool to a 
broadened class of real problems which have 
got abundent technological importance. In 
view of its importance in the fields of aeronautics, 
atomic power, chemical engineering and space 
research, a free connection problem has been 
given consideration. The heat effect of side 
walls on natural convection between parallel 
plates has been a popular field of research for a 
considerable length of time. In this situation, 
to a greater extent than in any other heat-transfer 
situations, flow behavior is intimately related 
with energy and mass transfer. This is so because 
the more interesting aspects of body force effects 
very often involve a coupling between momen- 
tum transport and the convective transfer of 
energy and mass. Several analytical studies of 
free convection flows in the presence of various 
geometries have been reported in literature. Of 
particular interest is the problem discussed by 
Ostrach [7]. He analysed the fully developed 
laminar natural convection flow between two 
vertical parallel plates maintains at different 
constant temperatures. The aim of the present 
investigation is to study Ostrach’s problem, 
replacing the Newtonian fluid by a micropolar 
fluid model. We solve the coupled set of non- 
linear simultaneous equations governing the 
flow, micro-rotation and temperature fields, by 
applying a suitable iteration technique. We 
notice from the numerical computations, the 
difference between the zeroth and first order 
approximations of all the flow and heat-transfer 

parameter is small, indicating that the iteration 
procedure used is convergent and quite effective. 

2. FORMULATION AND SOLUTION OF THE 
PROBLEM 

The two infinite vertical parallel walls are 
oriented in the direction of x,-axis and are 
parallel to the direction of the body force. The 
x,-axis is in the direction perpendicular to the 
walls. The walls are kept at a distance 2L apart 
and maintained at constant temperatures ‘I’, 
and T,, the fluid is supposed to be free from 
external couples. In view of the above conditions 
we take 

tj1 = Ijl(.x,), 112 = 0, zig = 0, 

v, = 0, v2 = 0, v3 = 1+(x2), 

i 

(1) 

P = Pb,, x*1. T = T(x,). 

Using the conditions of the equilibrium (Hydro- 
static) state of the fluid and assuming that the 
density of the fluid is a function of temperature 
alone, the equations of motion, continuity and 
energy for the micropolar flow, are obtained as 
follows : 

(li+k)% 
2 

+ k$$ - 2 + p/3F,,0 = 0, (2) 
1 

d2v, ,&_2kv =() 
‘dx:- dx, 3 ’ (3) 

All the letter symbols involved in equations 
(l)-(4) are defined in nomenclature. 

Before we introduce the simplified non- 
dimensional equations, we modify the pressure 
term in equation (2). From equation (2) we see 
that dPJdx, must be a constant, that is, the 
pressure gradient dp/ih, in the channel differs 
from the hydrostatic pressure gradient only by 
a constant. However, the pressure difference 
required to accelerate the fluid from the 
hydrostatic state to the fully developed state, 
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and decelerate it back to the hydrostatic state 
must be finite. But the channel is of infinite 
length, and hence the constant can only be 
zero, and the pressure gradient in the channel 
should be equal to the hydrostatic pressure 
gradient. In other words we may take dP,/dx, 
= 0. With this modification incorporated, 
equations (2H4) will be solved subject to the 
boundary conditions 

x2 = -L: 111 = 0, v3 = 0, 

0 = T, - T, = tl,, 

x2 = L: II1 = 0, vg = 0, 

8 = T, - T, = me,. (5) 

In order to non-dimensionalize the governing 
equations, we introduce the following non- 
dimensional variables : 

With the help of these non-dimensional 
variables ; equations (2)-(5) may be written in 
the form : 

(1 + R)u” + R cd + z = 0, (7) 

A or1 - u’ - 2 o = 0, (8) 

7” + Uf2 + f (U! + 2 0)2 

+ RA cd2 = 0, (9) 

subject to the boundary conditions : 

y= -1, U = 0, w = 0, z = S, 

y=l, u=o, 0 = 0, z = mS, (10) 

where R = k/p and A = ylkL2 are the non- 4. DISCUSSION OF RESULTS 

dimensional microrotation parameters and a We count S as an index to the increase of wall 
prime denotes differention with respect to y. heat. With the increase of S, we notice, the 

3. SOLUTION OF THE BOUNDARY VALUE 
PROBLEM 

The boundary value problem defined by 
equations (7HlO) is nonlinear and complicated, 
it is difficult to get a closed form solution. Hence, 
we adopt an iterative procedure which replaces 
this single boundary value problem by a system 
of simple boundary value problems, which are 
emenable to an easy analytical solution. We 
present the iterative system of equations in the 
following form : 

(1 + R)u; + Rw:, + z, = 0, (11) 

Am;-u;-2w,=O, (12) 

7:: + 1 +; u;?,“-, + ;(u:-, + 2w,_,)2 
( J 

+ RA (a’,_ J2. 

The boundary conditions (10) become : 

(13) 

Q&l) = 0, w,( f 1) = 0, 

z,(-1) = s, r,(l) = mS, (14) 

where n = 0, 1,2,3,4, . . . and u’- 1 = 0, o- 1 = 0, 
w’ 1 = 0. 

The case n = 0, corresponds to the situation 
when the effects of micro-rotation and the 
frictional heating on temperature are neglected, 
and the case n = 1, corresponds to the situation 
when these effects are taken into account to the 
first order of approximation. The analytical 
solutions for these two different cases are 
obtained and numerical results are computed 
for the flow and heat-transfer parameters of 
practical importance. It is lengthy to describe 
the analytical solutions and the usual shear- 
stress parameters and the Nusselt numbers of the 
flow and heat-transfer characteristics. So, these 
analytical results will not be reyorded here. 
Instead the computed mass flow rate, shear- 
stress components, the micro-stresses and 
Nusselt numbers are presented in Tables 1-3. 
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Table 1. Massflow rate Q, for S = 1.0 

~._~~.-.._!!~_.-~~.80~ 

1.0 a47656 a35663 0.23716 0.14198 0.07875 
I”0 

2.0 a73302 0.54540 0.36049 a21471 0.11867 
:- 

R m A = 05 - 1.0 2.0 4.0 
‘\ 

8.0 
__-.____ 

I.0 a36495 a35663 a35168 a34895 0.34748 
1.0 

2.0 0.55841 0.54539 0.53765 a53339 0.53114 

1.0 0.14740 0.14198 0.13885 0.13716 al3628 
4.0 

2.0 0.22299 a21471 a20993 0.20734 a20592 
.-.____- 

:C~:ClliIIT~RI. 

1.0 OeO6916 0.13940 0.21072 0.28314 
1.0 I.0 

2.0 a10415 a21077 0.31985 a38000 

1-O a06761 0.13626 0.20594 a27665 
1.0 5.0 

2.0 0.10182 0.20598 0.31248 a42132 

1~0 0.02340 0.04692 0.07057 0.09435 
5.0 I.0 

2.0 003514 0.07057 0.10629 0.14230 
-... .._- -. 

temperature everywhere in the fluid rises, 
consequently the velocity also increases. This 
increases the mass flow rate. While the walls 

Table 2. Values afshear-stressfor various dues oj”R or A or S 
v ---_-_-- 

y= -1 y=+t ~ 

-_.:1 

_..__. ___~_. 
R =a5 2.0 8.0 0.5 250 8.0 

m 

1 1.0455 I.0233 l@I79 - 1.0455 - 1.0233 - 1.0079 
A=1 

2 1.4334 1.3814 1.3455 - I.7730 - 1.7242 - 16903 
.- . -~~ ____..__~. -... ---.- ~- .-- 

\ 
A=@5 2.0 8.0 a5 2‘0 X.0 

--._ln___ ____~~ _ .--.--..-. ___-- 
1 1.0355 1.0340 1.0335 - 1.0355 - 1.0340 - I.0335 

R=l 
2 1.4088 1.4076 1.4079 - 1.7522 - 1.7466 - 1.7442 

Isr---- 

-~- ~-_ 

s = a2 f36 a8 0.2 06 0.8 
__---_.-__ _. 

1 0.2014 O-6124 CM221 -02014 -0.6124 -0.8221 
R=A=l 

2 0.26920.8261 I,1138 -0.3371 -1.0303 -1.3865 

Table 3. Values of Nusselt numbers for sarious dues of‘ 
R or A or S 

_- 
S=l,A=l 

R= 
a5 

.~_~___~ -_- __.. _._~~~ __ 
*& - a22649 -0.11550 - 0.03902 

K1 a0591 O-22649 1 
Nu: 096764 

021465 0.11550 0.40354 0.03902 
Q’3824 0.58044 

__-____ 

S = 1, R = 1. 
A= 0.5 2-O 8.0 

Rii, -0.17533 -0.16926 -0.16735 

;I 
Nfi: 

0.17533 0.06705 0.08210 0.16926 0.08706 a36735 
a86187 0.84943 0.84572 

_... -._-___ ----._ -_ ~~__. _ -._ 
R=l,A=l, o2 

s =0.2 
0.4 0.6 0.X 

_.__~_ 
Kl, -0.03431 -0.06861 -0.10291 -0.13723 

;I 
NU,2 

0.41521 0.03431 0.33055 0.06861 024583 a10291 0.16890 a13723 
a 57080 a64160 0.71240 a77800 

_~...~__ 

* Bars on top indicate Nusselt numbers are for equal wall 
temperatures (n = 1). 

are having different temperatures (~FJ = 2) the 
fluid particles near the wall having higher 
temperature acquire greater velocities, this 
further increases the mass flow rate Q. These 
facts can be noticed from our numerical results 
presented in Table 1. Also, increase in velocity 
gradient at the wall with S, implies increase in 
skin friction. Table 2 ilIustrates this fact. The 
infhrence of micropolar parameters R and A on 
velocity and temperature fields is quite signi- 
ficant. It is observed that the effect of R or A on 
the velocity profiles is to flatten them. There is 
a sharp decrease in velocity profiles with an 
increase in R while the decrease is slow with A. 
Similar is the behavior of the temperature 
distribution. These in turn result in reduction 
of wall shears and rate of heat-transfer. It has 
been reported in literature that, when hot fluid 
flows down the channel, problems which arise 
from overheating of walls may be overcome by 
an injection of a coolant through the walls. 
Methods of decreasing rates of heat-transfer 
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are of immense help in combustion chambers, 
exhaust nozzles and porous walled flow reactors. 
From the results of the present investigation, we 
may achieve these decreasing rates of heat- 
transfer by making the Newtonian solvent more 
and more micropolar. The other aspects of this 
problem, from the viewpoint of the development 
of the theory of micropolar fluids, these fluid 
particles contained in a small volume element 
will have microrotations about the centroid 
of the element. In order to maintain these 
rotations, part of the kinetic energy possessed 
by the fluid must be dissipated. Thus, it is 
expected here, the flattening of velocity profiles 
hence less frictional heating, consequently a 
decrease of temperature. The other noticeable 
points of this investigation are, (i) when the walls 
are having same temperature heat flows from 
both the walls to the fluid. When the walls are 
having different temperatures heat flows from 
the wall at higher temperature into the fluid, and 
from the fluid to the other wall, (see Table 3), 
(ii) the component of micro-rotation decreases 

as R or A increases while increases with S or 
m. It is negative in the left half of the channel 
while positive in the other half. When the walls 
are having equal temperature, the micro- 
rotation vanishes on the central line of the 
channel, where as the vanishing shifts towards 
the wall having higher temperature, in case the 
walls are at different temperatures. 
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ECOULEMENT MICROPOLAIRE PAR CONVECTION NATURELLE 

R&n&--On d&it ici les caracttristiques dynamiques et thermiques de I’&coulement micropolaire par 
convection naturelle. On trouve que des flux thermiques dtcroissants peuvent etre atteints en rendant le 
dissolvant newtonien de plus en plus micropolaire. Les caracttristiques micropolaires sont dtterminkes 

par les deux parambtres sans dimension R (en relation avec la microstructure) et A (en relation avec la 

substructure). L’effet de R est plus pronon& que celui de A sur les champs de vitesse et de tempkrature. 

MIKROPOLARE FREIE KONVEKTION 

Zusammenfassung-Die StrBmungs- und Wkmetibergangseigenschaften der mikropolaren freien Kon- 
vektion werden beschrieben. Es zeigt sich, dass eine Abnahme des WLrmeiibergangs erreicht werden kann, 
wenn man das Newtonsche Liisungsmittel mehr und mehr mikropolar macht. Die mikropolaren Eigen- 
schaften werden bestimmt durch zwei dimensionslose Parameter, R (fiir den Mikrostrukturcharakter) 
und A (fiir den Substrukturcharakter). Der Einfluss von R auf Strdmungs- und Temperaturfelder ist 

deutlich ausgeprlgt, der von A ziemlich schwach. 

MBKPOIIOJIFIPHOE CBOGO~HOHOHBEKTBBHOE TEYEHHE 

AHHoTsqasI-OnllcbrnaIoTcR AnHaMHsecKHe I4 TennoubIe xapatcTepacTIIHk1 CBO~O~HOKOH- 

BeKTHBHOI’O MHHpOnO~HpHOrO Te’IeHHH. 
6bITb CHLlXEeHEl IIyTeM fiOCTGI?KeHHR 

HaiQeHo, qT0 CKopocTb nepeHoca Tenna MoHieT 
BCH 6onbmen ML~KpOnOJIHpHOCTH HbMTOHOBCKOrO 

paCTBOpATWIH. MHKpOnOnHpHbIe XapaKTepHCTAKH OIIpeReJIHKITCH C IIOM OUbIO JJBYX 6e3- 

pa3MepHbIX napaMeTpOB R (Z4HAeKCa BaRa MWKpOCTpyKTypbI) II .4 (MHReKCa BllRa ~o~cT~~~- 

TYpbI). n0 CpaBHeHHIO C A BJIMRHMt? R Ha Te’4eHCle 12 TeMnepaTy,,HbIe n0j1n 6Onee 

3HaWiTeJIbHOe. 


